Bayesian statistics
and the borrowing of strength
in high-dimensional data analysis

Aad van der Vaart
Mathematical Institute
Leiden University

Royal Netherlands Academy of Sciences, Amsterdam, September 2013
AIM: determine θ

MEASUREMENTS: $X_1, \ldots, X_n \overset{iid}{\sim} N(\theta, 1)$.
AIM: determine θ

MEASUREMENTS: $X_1, \ldots, X_n \overset{iid}{\sim} N(\theta, 1)$.

Optimal method to recover θ:

$$\hat{\theta} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i.$$
AIM: determine θ

MEASUREMENTS: $X_1, \ldots, X_n \overset{iid}{\sim} N(\theta, 1)$.

Optimal method to recover θ:

$$\hat{\theta} = \overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Principles:
- Maximum likelihood
- Objective Bayes
- Equivariant

Criteria:
- Minimum variance unbiased
- Admissible for symmetric loss
- Minimal risk equivariant
- Minimax
AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X^j_1, \ldots, X^j_n \overset{iid}{\sim} N(\theta^j, 1)$, for $j = 1, \ldots, p$.

We assume NOT:

- relations between $\theta^1, \ldots, \theta^p$.
- dependence between measurements.
Multidimensional measurements with errors (Stein, 1956)

AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X_1^j, \ldots, X_n^j \overset{iid}{\sim} \mathcal{N}(\theta^j, 1)$, for $j = 1, \ldots, p$.

We assume NOT:

- relations between $\theta^1, \ldots, \theta^p$.
- dependence between measurements.

THEOREM [Stein, 1956]
If $p \geq 3$, then $(X_1^n, X_2^n, \ldots, X_p^n)$ is inadmissible: there exists (T^1, \ldots, T^p) with, for all $\theta^1, \ldots, \theta^p$:

$$\sum_{j=1}^{p} \mathbb{E}(T^j - \theta^j)^2 < \sum_{j=1}^{p} \mathbb{E}(X_n^j - \theta^j)^2.$$
Intermezzo: Bayes’s rule (Bayes, 1763)

BAYES’S RULE
If a variable θ follows a probability distribution Π and given θ a variable X follows a probability density $x \mapsto p(x \mid \theta)$, then θ given X follows the distribution:

$$d\Pi(\theta \mid X) \propto p(X \mid \theta) d\Pi(\theta).$$
BAYES’S RULE

If a variable θ follows a probability distribution Π and given θ a variable X follows a probability density $x \mapsto p(x \mid \theta)$, then θ given X follows the distribution:

$$d\Pi(\theta \mid X) \propto p(X \mid \theta) d\Pi(\theta).$$

Bayesian statistics:

- $d\Pi(\cdot)$ models the a-priori uncertainty about the parameter θ.
- $d\Pi(\cdot \mid X)$ the a-posteriori uncertainty.
WORKING HYPOTHESIS: $$(\theta^1, \theta^2, \ldots, \theta^p) \sim \Pi.$$
WORKING HYPOTHESIS: \((\theta^1, \theta^2, \ldots, \theta^p) \sim \Pi\).

Then \((X_j^i, \theta_j: i = 1, \ldots, n, j = 1, \ldots, p)\) follow a joint probability distribution.

Bayes’s rule gives a conditional distribution

\[(\theta^j: j = 1, \ldots, p) \mid (X_j^i: i = 1, \ldots, n, j = 1, \ldots, p) \]

and hence expected values

\[T^j(\Pi) := E(\theta^j \mid X_j^i: i = 1, \ldots, n, j = 1, \ldots, p). \]

Estimate \(\Pi\) from the data and use \(T^j(\hat{\Pi})\) (or use a hyper prior).
AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X^j_1, \ldots, X^j_n \overset{iid}{\sim} N(\theta^j, 1)$, for $j = 1, \ldots, p$.

WORKING HYPOTHESIS: $\theta^1, \ldots, \theta^p \overset{iid}{\sim} N(0, A)$.

If we knew A, then we might use the Bayes estimator $A/(A + 1)\bar{X}^j_n$.
Empirical Bayes method: example
(James, Stein)

AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X^j_1, \ldots, X^j_n \sim iid N(\theta^j, 1)$, for $j = 1, \ldots, p$.

WORKING HYPOTHESIS: $\theta^1, \ldots, \theta^p \sim iid N(0, A)$.

If we knew A, then we might use the Bayes estimator $A/(A + 1)\bar{X}^j_n$.

Under the working hypothesis $\bar{X}^j_n \sim iid N(0, A + 1/n)$.

This suggests the estimate $\hat{A} = \sum_j \bar{X}^j_n^2 / (p - 2) - 1/n$.
AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X^j_1, \ldots, X^j_n \overset{iid}{\sim} N(\theta^j, 1)$, for $j = 1, \ldots, p$.

WORKING HYPOTHESIS: $\theta^1, \ldots, \theta^p \overset{iid}{\sim} N(0, A)$.

If we knew A, then we might use the *Bayes estimator* $A/(A + 1)\overline{X^j_n}$.

Under the working hypothesis $\overline{X^j_n} \overset{iid}{\sim} N(0, A + 1/n)$.

This suggests the estimate $\hat{A} = \sum_j \overline{X^j_n}^2 / (p - 2) - 1/n$.

$\hat{A}/(\hat{A} + 1)\overline{X^j_n}$ beats the MLE.

Not only under the working hypothesis, but for *any* $\theta^1, \ldots, \theta^p$.
Nonparametric empirical Bayes method
(Zhang, 2009)

AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X_1^j, \ldots, X_n^j \overset{iid}{\sim} N(\theta^j, 1)$, for $j = 1, \ldots, p$.

WORKING HYPOTHESIS: $\theta^1, \ldots, \theta^p \overset{iid}{\sim} G$.

Then X_n^j has marginal density $x \mapsto \int \sqrt{n} \phi((x - s) \sqrt{n}) \, dG(s)$, and nonparametric maximum likelihood estimator for G is:

$$\hat{G} = \arg\max_G \prod_{j=1}^p \int \sqrt{n} \phi((X_n^j - s) \sqrt{n}) \, dG(s).$$
AIM: determine $\theta^1, \ldots, \theta^p$

MEASUREMENTS: $X_1^j, \ldots, X_n^j \overset{iid}{\sim} N(\theta^j, 1)$, for $j = 1, \ldots, p$.

WORKING HYPOTHESIS: $\theta^1, \ldots, \theta^p \overset{iid}{\sim} G$.

Then X_n^j has marginal density $x \mapsto \int \sqrt{n} \phi((x - s) \sqrt{n}) \ dG(s)$, and nonparametric maximum likelihood estimator for G is:

$$\hat{G} = \arg\max_G \prod_{j=1}^p \int \sqrt{n} \phi((X_n^j - s) \sqrt{n}) \ dG(s).$$

(An analogous full Bayes analysis would put a Dirichlet prior on G.)
Borrowing strength: by connecting (even seemingly unrelated) samples and parameters we gain overall.
Borrowing strength: by connecting (even seemingly unrelated) samples and parameters we gain overall. This is particularly important in large scale inference, when the data is massive, as in genomics, systems biology, image analysis, ...
Bayesian assumptions on parameters are often *working hypotheses*, not based on scientific theory.

Frequentist Bayesian theory tries to validate (or not) the resulting procedures in a general, non-Bayesian framework, taking account that priors can be partly *misspecified*.

Bayesian methods are promising for high-dimensional data, but their performance is poorly understood at the present time.
Stein’s 1956 *inadmissibility* seemed a peculiarity.
Stein’s 1956 *inadmissibility* seemed a peculiarity.

Robbins’ 1960s *empirical Bayes method* was not followed up much either.
Stein’s 1956 *inadmissibility* seemed a peculiarity.

Robbins’ 1960s *empirical Bayes method* was not followed up much either.

OUTLOOK:
- In high dimensions the potential gain is large.
- A-priori knowledge should make this gain even bigger.

Sparsity

Consider many parameters $\theta^1, \theta^2, \ldots, \theta^p$, but suppose most are actually (near) zero.

Sparsity prior:

- Choose s from prior π_n on $\{0, 1, 2, \ldots, p\}$ with exponential decrease.
- Choose $S \subset \{0, 1, \ldots, p\}$ of size $|S| = s$ at random.
- Choose $(\theta_i: i \in S)$ from density g_S on \mathbb{R}^S (and set other θ_i zero).

THEOREM [Castillo, vdV, 2013]

This achieves the *minimax benchmark*: for $s = \#(j: \theta^j \neq 0)$,

$$\mathbb{E} \sum_{j=1}^{p} (T^j - \theta^j)^2 \asymp \frac{s}{n} \sqrt{\log \frac{s}{n}}.$$

Compare to: $\mathbb{E} \sum_{j=1}^{p} \left(\frac{X^j_n}{n} - \theta^j \right)^2 = \frac{p}{n}$.
Uncertainty quantification and multiplicity correction

The Bayesian analysis results in a posterior distribution on \((\theta^1, \ldots, \theta^p)\), and hence in \textit{marginal posterior distributions} of every \(\theta^j\).

Credible intervals can be used for overall uncertainty quantification (?).
$Y_{i,j}$: RNA expression count of tag $i = 1, \ldots, p$ in tissue $j = 1, \ldots, n$.

x_j: covariates of tissue j.

\[
Y_{i,j} \sim \text{(zero-inflated) negative binomial, with}
\]

\[
EY_{i,j} = e^{\alpha_i + \beta_i x_j}, \quad \text{var } Y_{i,j} = EY_{i,j} \left(1 + EY_{i,j} e^{-\phi_i}\right).
\]

Simple Bayesian model: $\alpha_i \perp \beta_i \perp \phi_i$ with

\[
\alpha_i \sim F, \quad \beta_i \sim G_\tau, \quad \phi_i \sim H_\tau.
\]
$Y_{i,j}$: RNA expression count of tag $i = 1, \ldots, p$ in tissue $j = 1, \ldots, n$.

x_j: covariates of tissue j.

<table>
<thead>
<tr>
<th>$Y_{i,j}$ ~ (zero-inflated) negative binomial, with</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EY_{i,j} = e^{\alpha_i + \beta_i x_j}$, \quad var $Y_{i,j} = EY_{i,j}(1 + EY_{i,j}e^{-\phi_i})$.</td>
</tr>
</tbody>
</table>

Simple Bayesian model: $\alpha_i \perp \beta_i \perp \phi_i$ with

\[
\alpha_i \sim F, \quad \beta_i \sim G_\tau, \quad \phi_i \sim H_\tau.
\]

Efficient empirical Bayes approach to estimate τ: calculate marginal posteriors Π^{β_i} of β_1, \ldots, β_p and Π^{ϕ_i} of ϕ_1, \ldots, ϕ_p given τ and equate

\[
\frac{1}{p} \sum_{i=1}^{p} \Pi^{\beta_i}(\cdot | Y_{i1}, \ldots, Y_{in}, \tau) = G_\tau(\cdot), \quad \frac{1}{p} \sum_{i=1}^{p} \Pi^{\phi_i}(\cdot | Y_{i1}, \ldots, Y_{in}, \tau) = H_\tau(\cdot).
\]
Even seemingly unrelated analyses can *borrow strength* from each other.

Gains can be particularly big if the data is big.

Bayesian thinking provides methods that can achieve this.

These methods may be computationally challenging.

There is much to be learned about the validity of these methods, in particular their uncertainty quantification.
Large scale testing by empirical Bayes

For every out of 30 000 genes test statistically whether its expression differs in cancer and normal tissues.
Large scale testing by empirical Bayes

For every out of 30 000 genes test statistically whether its expression differs in cancer and normal tissues.

Are the 30 000 tests connected?
Large scale testing by empirical Bayes

For every out of 30 000 genes test statistically whether its expression differs in cancer and normal tissues.

Are the 30 000 tests connected?

Assume:

- A gene is expressed with probability π.
- The p-value of the gene’s test is random if not expressed; otherwise from some f.
Large scale testing by empirical Bayes

For every out of 30 000 genes test statistically whether its expression differs in cancer and normal tissues.

Are the 30 000 tests connected?

Assume:
- A gene is expressed with probability π.
- The p-value of the gene’s test is random if not expressed; otherwise from some f.

Now estimate π and f from the data and compute

$$P(\text{gene is expressed} \mid \text{ALL DATA}).$$
THEOREM
Given ‘flat priors’ on the $s_n \ll p$ nonzero coefficients,

$$E_{\theta_0} \left\| \Pi_n (\cdot | Y^n) - \sum_S \hat{w}_S N (\hat{\theta}_S, \Gamma_{S}^{-1}) \otimes \delta_{S^c} \right\| \to 0,$$

for $\hat{\theta}_S$ the LS estimator for model S, Γ_S^{-1} its covariance, and

$$\hat{w}_S \propto \frac{\pi_p (s)}{(p^s)} \left(\frac{\lambda \sqrt{2\pi}}{2} \right)^s |\Gamma_S|^{-1/2} e^{\frac{1}{2} \| X S \hat{\theta}_S \|^2_2} 1_{|S| \leq 4s_n, \| \theta_{0,S^c} \|_1 \leq s_n \sqrt{\log p/\| X \|}}.$$

COROLLARY
Given consistent model selection, mixture can be replaced by

$$N (\hat{\theta}_{S_{\theta_0}}, \Gamma_{S_{\theta_0}}^{-1}).$$