Astronomical observation through the earth atmosphere

Joseph Braat

Optics Research Group
Faculty of Applied Sciences
Technical University Delft
Astronomical observation through the earth atmosphere

1) Limit to angular resolution

2) Observation with the aid of a telescope;
 - telescope types
 - image field
 - influence of telescope aberration

3) Influence of the earth atmosphere;
 - effect on resolution
 - E-ELT and the ‘resolution solution’
Intensity distribution on the retina

Ray optics

Wave optics

Euclid

Fresnel

Astronomical imaging through the earth atmosphere

(KNAW E-ELT mini-symposium, 22 November 2016, Joseph Braat)
Intensity distribution in focus

George B. Airy (1801-1892), Astronomer Royal 1835-1881

Publication:
“On the diffraction of an object glass”,
Transactions of the Philosophical Society of Cambridge,

\[\delta_A = \left(2.4 \frac{\lambda}{D} \right) f \]

\[= 2 \alpha_A f \]

Eye:
\[\alpha_A = 0.0002 \]

\[\approx 1' \]
Illustration of two-star resolution
Testing of two-star resolution

A $s = 1.2 \delta_A$

B $s = 0.6 \delta_A$

Rayleigh criterion

C $s = 0.3 \delta_A$

D $s = 0$

Astronomical imaging through the earth atmosphere
(KNAW E-ELT mini-symposium, 22 November 2016, Joseph Braat)
Astronomical observation through the earth atmosphere

1) Limit to angular resolution

2) Observation with the aid of a telescope;
 - telescope types
 - image field
 - influence of telescope aberration

3) Influence of the earth atmosphere;
 - effect on resolution
 - E-ELT and the ‘resolution solution’
Lens telescope and (angular) magnification

Telescope: $m_A = \frac{a_1}{a_0} = \frac{f_0}{f_1}$ \hspace{1cm} $m_T = \frac{a_0}{a_1} = \frac{f_1}{f_0}$

Irradiance of a star image on the retina is m_A^2 LARGER

First observations with lens telescope by G. Galilei
Mirror telescope and aspheric surfaces
(conic sections and general aspheres)

Conic constant κ

- $\kappa < -1$ hyperbola
- $\kappa = -1$ parabola
- $-1 < \kappa < 0$ prolate ellipse
- $\kappa = 0$ sphere
- $\kappa > 0$ oblate ellipse

- - - - General Asphere
Astronomical imaging through the earth atmosphere

Mirror telescopes (8 m primary)

Theoretical resolution:
16 milli-arcsec = 8×10^{-8}

A - mirror paraboloid

$2a_0 = 3.10^{-5} = 6''$

$N = 5.10^4$

B - mirror paraboloid - hyperboloid (classical Cassegrain)

$2a_0 = 6.10^{-4} = 2'$

$N = 10^8$

C - mirror hyperboloid - hyperboloid (Ritchey-Chrétien)

$2a_0 = 15.10^{-4} = 5'$

$N = 6.10^8$

$F_1 F''$

25 m

8 m

$p = 0.7$ mm

$p = 40$ mm

$p = 100$ mm

ASTIGMATISM
Three-mirror telescopes

Example of a classical Paul-Baker design (primary mirror 39 m diameter)

NO COMA

NO ASTIGMATISM

NO FIELD CURVATURE

\[f' = 75 \text{ m} \]

\[p = 500 \text{ mm (sensor size)} \]

\[2a_0 = 6.4 \times 10^{-3} = 23' = 0.38^\circ \]

\[N \approx 10^{+11} \]

Theoretical resolution ELT

3.4 milli-arcsec = \(1.7 \times 10^{-8}\)

(5 meter on the moon)
Three-mirror Paul-Baker telescope
Classical layout with general aspheres (39 meter primary)

<table>
<thead>
<tr>
<th>$d_1 = \infty$</th>
<th>c_1</th>
<th>-0.0100136102</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{2,1}$</td>
<td>$-0.50068051 \cdot 10^{-02}$</td>
<td>$a_{4,1}$</td>
</tr>
<tr>
<td>$a_{6,1}$</td>
<td>$-0.63862737 \cdot 10^{-12}$</td>
<td>$a_{8,1}$</td>
</tr>
<tr>
<td>$d_2 = -33.3333$</td>
<td>c_2</td>
<td>-0.030177320</td>
</tr>
<tr>
<td>$a_{2,2}$</td>
<td>$-0.15088660 \cdot 10^{-01}$</td>
<td>$a_{4,2}$</td>
</tr>
<tr>
<td>$a_{6,2}$</td>
<td>$-0.20207273 \cdot 10^{-08}$</td>
<td>$a_{8,2}$</td>
</tr>
<tr>
<td>$a_{10,2}$</td>
<td>$-0.23585205 \cdot 10^{-14}$</td>
<td></td>
</tr>
<tr>
<td>$d_3 = +50.0000$</td>
<td>c_3</td>
<td>-0.020000000</td>
</tr>
<tr>
<td>$a_{2,3}$</td>
<td>$-0.10000000 \cdot 10^{-01}$</td>
<td>$a_{4,3}$</td>
</tr>
<tr>
<td>$a_{6,3}$</td>
<td>$-0.20202048 \cdot 10^{-09}$</td>
<td>$a_{8,3}$</td>
</tr>
<tr>
<td>$d_4 = -25.06799900$</td>
<td>c_4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image quality</th>
<th>field angle γ</th>
<th>OPD_{rms} (units of λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0’</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>3.7’</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>7.3’</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>10.3’</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>11.0’</td>
<td>0.051</td>
</tr>
</tbody>
</table>
Telescope aberrations: coma and astigmatism

- Coma
- Airy disc
- Astigmatism

One star and two stars images are shown.
Astronomical observation through the earth atmosphere

1) Observation with the naked eye;
 - angular resolution

2) Observation with the aid of a telescope;
 - telescope types
 - image field
 - influence of telescope aberration

3) Influence of the earth atmosphere;
 - effect on resolution
 - E-ELT and the ‘resolution solution’
Atmospheric turbulence (‘seeing’)

Star light

wavefront

ATMOSPHERE

angular spread rays: 0.8 to 1.2 arcsec

wavefront deviation: several micrometers

eye pupil

(4 mm)
NO BLUR,

ONLY TILT

E-ELT primary

(39000 mm)
SEVERE BLURRING

AND TILT
Atmospheric turbulence (‘seeing’)
Atmospheric turbulence (‘seeing’)
Conclusions

- a (passive) 39 meter telescope is unique with respect to light collection

- all mirror surfaces should be individually measured and adjusted down to a fraction (50 nanometer) of the wavelength of visible light (\(\lambda=550\) nanometer)

- ‘seeing’ at E-ELT-site is of the order of \(0.8\) arcsec (0.3 arcsec record low value) → enormous gap with the theoretical resolution of E-ELT: \(0.0034\) arcsec

- full imaging capability of the 39-meter telescope requires

 - mechanical deformations add up to optical aberrations smaller than \(100\) nm
 - seeing effects should be cancelled over an area of \(1100\) square meters

HERCULEAN TASK for the E-ELT team of the European Southern Observatory