Genetics, economics, and education

Philipp Koellinger
University of Amsterdam
Road map

• Why social scientists should be excited about genetics
• The example of educational attainment
• The road ahead
Heritability estimates for various traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>(h^2_{\text{twin}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monogenetic disorders (e.g. Huntington disease)</td>
<td>≈ 100%</td>
</tr>
<tr>
<td>Height</td>
<td>≈ 90%</td>
</tr>
<tr>
<td>BMI</td>
<td>≈ 70%</td>
</tr>
<tr>
<td>Personality</td>
<td>≈ 50%</td>
</tr>
<tr>
<td>Educational attainment</td>
<td>≈ 40%</td>
</tr>
<tr>
<td>Self-employment</td>
<td>≈ 40%</td>
</tr>
<tr>
<td>Happiness</td>
<td>≈ 35%</td>
</tr>
<tr>
<td>Overconfidence</td>
<td>≈ 20%</td>
</tr>
<tr>
<td>Risk preferences</td>
<td>≈ 15%</td>
</tr>
</tbody>
</table>

Notes: Heritability is defined as \(h^2 = \frac{VG}{VP} \) where \(VP \) is the variance of a trait (“phenotype”) and \(VG \) is phenotypic variance due to genotypic variance. \(h^2_{\text{twin}} \) refers to estimates obtained from twin studies.
Why study the genetics of social-scientific variables?

1. Identifying causal pathways

2. Informing theory

3. Better understanding of environmental effects
 - Gene-environment interactions
 - Using polygenic scores as control variables

4. Links between behavior and health
Challenges in gene discovery

• Three well-known challenges to discover genetic associations:
 1. Theory is not a good guide *yet* for studying the effects of genes
 • >14,000 genes expressed in the brain
 • Most published findings from candidate gene studies could not be replicated
 2. Multiple testing: ~1 mio independent statistical tests in a GWAS
 • Genome-wide significance: $p < 5 \times 10^{-8}$
 3. Very small effect sizes of common variants
 • Need very large samples for GWAS and prediction

• Solutions:
 1. International collaboration of data providers and meta-analysis (e.g., the Social Science Genetic Association Consortium - SSGAC)
 2. Replication
GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment

Rietveld et al., Science, 340, 1467-1471, 2013
GWAS on educational attainment

- 42 + 12 = 54 cohorts participated ($N \sim 125,000$)
- Two measures for educational attainment
 - Years of schooling ($EduYears$)
 - College degree yes/no ($College$)
- Strict quality controls
 - Data
 - MAF, call rate, imputation quality etc.
 - Population stratification
 - First 4 principle components from cohort-specific genetic relatedness matrix
 - Genomic control
- Many follow-up analyses
Three replicated SNPs

- Max $R^2 = 0.022\%$ for *EduYears*, ~2 months difference between the two homozygotes
- Max *Odds* = 0.904 for *College*, ~5.4% difference in chance to complete college between the two homozygotes
Replicated loci from discovery stage

<table>
<thead>
<tr>
<th>SNP</th>
<th>College rs11584700</th>
<th>Beta</th>
<th>p-value</th>
<th>Replication rs4851266</th>
<th>Beta</th>
<th>p-value</th>
<th>Combined rs9320913</th>
<th>Beta</th>
<th>p-value</th>
</tr>
</thead>
</table>
| | | -0.101| 2.07×10^{-9} | -0.101 | 0.001 | | -0.101 | 8.24×10^{-12}
| EduYears| | 0.064 | 2.20×10^{-9} | 0.075 | 0.007 | | 0.066 | 5.33×10^{-11}
| | | 0.076 | 4.19×10^{-9} | 0.062 | 0.024 | | 0.076 | 3.50×10^{-10}

- Largest effect sizes of replicated SNPs:
 - Max $R^2 = 0.022\%$ for EduYears, ~2 months difference between the two homozygotes
 - Max Odds = 0.904 for College, ~5.4\% difference in chance to complete college between the two homozygotes
Genetic prediction analyses on education

![Graph showing the relationship between R² and threshold p-value for SNP selection. The graph illustrates the predictive power for different educational outcomes such as EduYears score and College score, comparing QIMR and STR methods.](image-url)

- Results replicate in additional sample that used very stringent controls for population stratification
 - Sample: 23andMe
- Results hold in mixed linear models that control for entire genetic relationship matrix
 - Sample: STR
- Results are robust in within-family tests
 - Samples: STR, QIMR, FHS

→ Extremely unlikely that association results are driven by population stratification
The road ahead

1. Exponential growth in genetic data
 – Genetic data is getting cheap!
 – Decades of genetic discovery ahead
 – R^2 of polygenic scores will increase

2. Identifying causal pathways / informing theory
 – New methods / data / models

3. Better understanding of environmental effects
 – Gene-environment interactions \rightarrow EA2.0
 – Using polygenic scores as control variables \rightarrow EA2.0

4. Links between behavior and health
 – EA & dementia
 – EA & Schizophrenia